Oxygen-17 N.M.R. Studies of "O-Enriched Transition Metal Carbonyl Complexes

By ROBIN L. KUMP and LEE J. TODD*

(Department of Chemistry, Indiana University, Bloomington, Indiana 47405)

Summary Oxygen-17 n.m.r. spectra of enriched, lower solubility metal carbonyl compounds are very useful in obtaining variable temperature, tumbling and acid-base data for these compounds.

RECENTLY a number of reports have appeared concerning ¹⁷O n.m.r. studies of metal carbonyl compounds obtained at natural abundance (0.037%).¹ These studies indicate

clearly that ¹⁷O n.m.r. spectroscopy will be quite useful for enhancing the understanding of donor-acceptor properties of ligands L in $LM(CO)_n$ compounds. To date the naturalabundance n.m.r. samples have had to be at least 0.3 M in order to obtain a useful signal even after accumulation of a large number of transients. We report here an n.m.r. study of some ¹⁷O-enriched metal carbonyl compounds which greatly enhances the usefulness of this method. Treatment of $Mo(CO)_6$ with $H_2^{17}O$, an appropriate ligand L (PPh₃, AsPh₃, etc), and a catalytic amount of sodium hydroxide formed² cis-Mo(C¹⁷O)₄L₂ and the ¹⁷O n m r data for these complexes are in Table 1

TABLE 1 ¹⁷O N m r data of cis-Mo(CO)₄L₂ complexes

L	δ(17O)/p p m a	
PPh_3	$359 \cdot 9 br$	357 2 sh
AsPh _a	$362 \cdot 4 br$	358 8sh
SbPh ₃	$365 \ 3br$	362 6sh
$PPhMe_2$	$358 \cdot 3 \mathrm{sh}$	356 6sh

^a br = broad, sh = sharp, CH_2Cl_2 solvent, shifts downfield from H₂¹⁷O are positive

Each complex shows two equal-area peaks, which could not be resolved with a Varian XL-100-15 spectrometer operating at 13 57 MHz using natural-abundance samples With the less bulky phosphine ligands in cis-Mo(CO)4-(PMe₂Ph)₂ the two signals are sharp, whereas one of the peaks is broad with the other complexes The carbonyl groups cis to the more bulky group 5A ligands in these samples give sharper signals probably owing to anisotropic tumbling which affects nuclear relaxation at certain ¹⁷O sites more than others

TABLE 2 ¹⁷O Nmr data of $[(C_5H_5)Fe(CO)_2]_2$ and $Ru_3(CO)_{12}$

Compound	Temp /°C	δ(17O)/p p m
$[C_5H_5Fe(CO)_2]_2$	55^{a}	461.5
	-46 ^b	555.7, 359.7 (cis-isomer)
		458.8 (trans-isomer)
$[C_5H_5Fe(CO)_2]_2 2AlPr_3$	28c	371.2
Ru ₃ (CO) ₁₂	28 ^b	$375 \ 3$

The ¹⁷O n m r data for $[(C_5H_5)Fe(CO)_2]_2$ and $Ru_3(CO)_{12}$ by exchange with ca 7% enriched C¹⁷O are given in Table 2 The C¹⁷O was produced by gas-phase photolysis of enriched cyclohexanone Both polynuclear compounds have one carbonyl oxygen signal at room temperature, and the ¹³C nmr spectra of these compounds also show one carbonyl carbon signal ^{3,4} The ¹⁷O spectrum for Ru₃(CO)₁₂ is the first reported for a trinuclear metal carbonyl complex The relatively large molecular weight does not substantially affect the linewidth (Δv_{i} ca 22 Hz)

At -46 °C three signals are observed in the ¹⁷O spectrum of $[(C_5H_5)Fe(CO)_2]_2$ indicating that the carbonyl exchange process is slower than the nmr time-scale for the cisisomer but not for the trans-isomer Similar results were obtained at low temperatures by ¹³C n m r spectroscopy ⁴ The 359 7 p p m peak is relatively sharp and is assigned to the terminal carbonyls of the cis-isomer The lowest-field peak is quite broad (270 Hz at half height) and is assigned to the bridging carbonyls of the cis-isomer Some organic ketones also experience similar line-broadening ⁵ The ¹⁷O spectrum of the bis(tri-isopropylaluminium) adduct of the iron complex contains one sharp peak at 371.2 p p m in the terminal CO region A previous ¹H n m r study⁶ showed that the aluminium alkyl co-ordination to the two bridging carbonyl oxygen atoms slows down the carbonyl exchange process so that it is static on the n m r time-scale at 28 °C The bridging carbonyl oxygen signal is not observed owing to increased quadrupolar broadening

^a C₆H₆ solvent ^b CH₂Cl₂ solvent ^c MePh-AlPr¹₃ solvent

(Received, 20th November 1979, Com 1215.)

¹ J P Hickey, I M Baibich, I S Butler, and L J Todd, Spectrosc Lett, 1978, 11, 671, D Cozak, I S Butler, J P Hickey, and L J Todd, J Magn Reson, 1979, 33, 149, J P Hickey, J R Wilkinson, and L J Todd, J Organomet Chem, 1979, 179, 159, S Aime, L Milone, D Osella, G E Hawkes, and E W Randall, *ibid*, 1979, 178, 171, Y Kawada, T Sugawara, and H Iwamura, J Chem Soc, Chem Commun, 1978, 291

²D J Darensbourg and J A Froelich, J Am Chem Soc, 1978, 100, 338 ³A Foster, B F G Johnson, J Lewis, T W Matheson, B H Robinson, and W S Jackson, J Chem Soc, Chem Commun, 1974, 1042, S Aime, O Gambino, L Milone, and E Saapa, Inorg Chim Acta, 1975, 15, 53 40 A Gansow, A R Burke, and W D Vernon, J Am Chem Soc, 1972, 94, 2250, D C Harris, E Rosenberg, and J D Roberts,

J Chem Soc, Dalton Trans, 1974, 2398

C Delseth and J P Kintzinger, Helv Chim Acta, 1976, 59, 466

⁶ A Alich, N J Nelson, D Strope, and D F Shriver, Inorg Chem, 1972, 11, 2976